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A B S T R A C T

With the development of autonomous vehicles, car sickness may affect increasing numbers of
car occupants. Car manufacturers have a real need to understand the causes of these symptoms,
which occur mainly when car occupants are not engaged in a driving task. This study is the first
to evaluate, in real driving conditions, the impact of lateral acceleration level and vehicle path
predictability on car sickness incidence and severity, and the potential relationship with physio-
logical changes. 24 healthy volunteers participated as front seat passengers in a slalom session
inducing lateral movements at very low frequency (0.2 Hz). They were continuously monitored
via physiological recordings and provided subjective car sickness ratings (CSR) after each
slalom, using a 5-point likert scale. CSR reveal that (i) the greater the lateral acceleration and
(ii) the less predictable the vehicle path, the more severe the car sickness symptoms in real dri-
ving conditions. An increase in several physiological parameters is also found simultaneously
with higher CSR, demonstrating activation of the sympathetic nervous system. Moreover, the
linear regression applied to our data suggests that these physiological parameters can be used to
indicate car sickness severity. Moreover, the linear regression applied to our data suggests that
the evolution of these physiological parameters may reflect the CSR level indicated by partici-
pants.

1. Introduction

Car sickness is very common, affecting about 60 % of the population (Diels, 2014), mainly passengers, half of whom present high
susceptibility and severe symptoms (Rolnick & Lubow, 1991; Chen et al., 2010; Bos et al., 2018). Indeed, exposure to certain car mo-
tion can lead to car sickness symptoms ranging from mild stomach aches or headaches to dizziness, nausea, and ultimately vomiting
(Dennison et al., 2016; Green, 2016). However, the development of autonomous vehicles, turning drivers into passengers (Sivak &
Schoettle, 2015; Diels & Bos, 2016; Kuiper, Bos, Diels, et al., 2020a), should sharply increase the numbers exposed to car sickness
(Diels, 2014; Kuiper et al., 2018). This would run counter to the promise of enhanced driver comfort during transport (Diels & Bos,
2016; Salter et al., 2019). Thus, understanding what induces these symptoms is currently a major concern for car manufacturers, par-
ticularly when the car occupant is not engaged in a driving task.
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Studies with this objective have so far been mainly conducted in laboratories, rarely in real vehicles. However, it was demon-
strated that the sensory context induced by laboratory stimuli will always diverge from that in a real car (Mühlbacher et al., 2020).
For example, when a rotating chair is used, the stimuli are mainly force-related, inducing vestibular and somatosensory solicitations
which may cause some motion sickness (eg. coriolis or somatogyral illusions (Lackner, 2014)). Conversely, with a virtual reality
headset, the stimuli are only visual, leading to visually-induced motion sickness (VIMS) (Naqvi et al., 2015; Dennison et al., 2016;
Kim & Park, 2020). Some attempts have been made to create a more realistic driving environment using dynamic driving simulators
(combination of virtual reality + physical motion) (Lin et al., 2007; Chen et al., 2010; Aykent et al., 2014). While this has the advan-
tage of engaging multimodal sensory inputs, the latter can never precisely replicate cars’ movements (Mühlbacher et al., 2020).
Therefore, no consensus on the exact origins of car sickness has been reached, principally due to the diversity of conditions and stim-
uli used in these studies.

Studies on motion sickness tend to focus first on the vertical movements very common in situations inducing sea sickness and air
sickness. The characteristics of the motion itself (e.g. acceleration, frequency, duration, speed, axis, etc.) are known to influence the
occurrence and severity of motion sickness (Lawther & Griffin, 1987; Bos & Bles, 1998; Koohestani et al., 2019). Movements at very
low frequency induce symptoms, especially when oscillating between 0.10 and 0.50 Hz (Turner, 1999; Golding et al., 2001; Donohew
& Griffin, 2004; Cheung & Nakashima, 2006). In laboratory conditions investigating vertical movements, pioneering modeling work
identified a critical threshold between 0.16 and 0.20 Hz inducing the highest incidence of motion sickness (O’Hanlon & McCauley,
1974). Since inertial forces tend to be interpreted by the vestibular system as translational above 0.20 Hz and as tilt below this value,
such a frequency should be sufficient to create strong intravestibular conflict (Bos & Bles, 1998). In addition, Lawther and Griffin
(1987) found a linear relationship between the magnitude of vertical accelerations on ships and the incidence of motion sickness
(MSI). With a range of 0.0 to 5.4 m/s2, an adapted McCauley's (1974) model showed a sigmoidal relationship between vertical accel-
eration magnitude and MSI: the greater the vertical acceleration, the more rapid the onset and the more severe the symptoms (O’
Hanlon & McCauley, 1974; Bos & Bles, 1998). In cars, however, horizontal accelerations caused by braking (longitudinal) and turning
(lateral) were shown to play a greater role in sickness incidence than vertical accelerations (Cheung & Nakashima, 2006; Diels, 2014).
A recent systematic review (Schmidt et al., 2020) found that the triggers of car sickness most frequently cited were those involving re-
peated lateral acceleration (multiple turns [71.8 %], winding roads [70.5 %]). It is actually lateral motion at very low frequency,
around 0.2 Hz, that was found to be the principal component of car sickness (Wada & Yoshida, 2016; Kuiper et al., 2018; Henry et al.,
2022). Strikingly however, no study so far has specifically investigated the impact of different levels of lateral acceleration on car
sickness severity in real driving conditions.

For car manufacturers, there is another key issue: the difference in passengers’ and drivers’ susceptibility to car sickness. This dif-
ference mainly arises from the driver’s ability to control and anticipate vehicle paths (Griffin & Newman, 2004; Perrin et al., 2013;
Wada & Yoshida, 2016). Conversely, passengers are passively exposed to vehicle motion and have a limited knowledge of forthcom-
ing actions (e.g., direction, speed, strength, duration etc.). Several studies conclude that the ability to predict future movements may
reduce the level of motion sickness induced (Rolnick & Lubow, 1991; Feenstra et al., 2011; Levine et al., 2014). These observations
are supported by the theory of sensory mismatch, which occurs when perceptual expectations from the internal model about upcom-
ing sensory inputs do not match those actually perceived (Reason, 1978; Dennison et al., 2016). In other words, passengers may expe-
rience discrepancies between their expectations and reality, whereas drivers planning their driving control actions can precisely an-
ticipate vehicle motion (Griffin & Newman, 2004; Perrin et al., 2013; Wada et al., 2018). In addition, the magnitude of this discrep-
ancy seems to impact the symptom severity of motion sickness (Dennison et al., 2016; Kuiper, Bos, Schmidt, et al., 2020b). While sen-
sory mismatch is often suggested as a cause of car sickness, however, less is known about how vehicle path unpredictability may af-
fect car sickness severity in real driving conditions.

Accurate analysis of the impact of each factor inducing motion sickness requires a method of identifying and assessing the symp-
toms. Currently, the most widely used are questionnaires (MSSQ (Golding, 2006); MSAQ (Gianaros et al., 2003); SSQ (Kennedy,
1993) etc.) and subjective scales (MISC (Bos et al., 2006); Griffin and Newman’s scale, (2004) etc.). However, both depend on the in-
dividual's subjective feelings and on how the individual interprets the scale in reporting discomfort. Moreover, both tools suffer from
low temporal and sickness resolution (Irmak, 2021). There is clearly a need for a more reliable and objective method of measuring
motion sickness severity.

Given the nature of the symptoms observed, physiological indicators could be a promising complement. In fact, motion sickness is
considered a neuro-vegetative crisis that can initiate physiological changes, also commonly observed during stressful events (Money,
1970; Gianaros et al., 2003; Muth, 2006). Attempts have been made to identify these changes for an objective measure of motion sick-
ness, by exploring several physiological variables: electrocardiography (ECG), respiration (RSP), electrodermal activity (EDA), elec-
trogastrogram (EGG), and electroencephalography (EEG). Multiple features have been extracted from each variable, most commonly:
heart rate (HR) and heart rate variability (HRV) for ECG, breathing rate (BR) for RSP, mean skin conductance level (SCL) and re-
sponse (SCR) for EDA, stomach contraction activity for EGG, and changes in frequency band content for EEG (Kim et al., 2005;
Dahlman et al., 2009; Dennison et al., 2016; Koohestani et al., 2019; Henry et al., 2022). However, although most of the motion sick-
ness studies were conducted in laboratory environments, their results were not consistent, possibly due to the wide variety of devices
and stimuli used (Koohestani et al., 2019). For example, when measuring HR, some studies reported a decrease using a rotating opto-
kinetic drum (Hu et al., 1991) and VIMS (VR (Nalivaiko et al., 2015; Dennison et al., 2016); Static driving simulator (Kim et al.,
2005)), while others found an increase in HR with similar devices but different stimuli (rotating optokinetic drum (Dahlman et al.,
2009); VR (Cheung, 2004; Himi et al., 2004). Between-study discrepancies in results were also observed for HRV, BR, and EDA mea-
surements (Hu et al., 1991; Kim et al., 2005; Dahlman et al., 2009; LaCount et al., 2009; Nalivaiko et al., 2015; Dennison et al., 2016;
Gavgani et al., 2017; Islam et al., 2020). Where car sickness symptoms are evaluated in real driving conditions, only one study mea-
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sures physiological variables (Irmak, 2021), with results indicating a clear link between EDA features and symptom severity, as well
as a slight increase in HR. It has been suggested that depending on the environments, stimuli, and induced movements, the nervous
system may be stimulated to a variable degree (Harm, 2002). This could explain the divergence in physiological responses and the
lack of consensus on the indicators that can be considered predictive of motion sickness.

Individual reactions to motion thus vary in intensity and complexity with the movements to which participants are exposed. Seek-
ing a more realistic assessment than that provided by laboratory conditions, this study was conducted in real car driving conditions
using 0.2 Hz lateral movements. Our aim was to assess how (i) lateral acceleration level and (ii) ability to predict vehicle path im-
pacted the severity of passengers’ car sickness. Based on the literature, we hypothesized that (i) the stronger the acceleration, the
more severe the symptoms and (ii) inability to predict vehicle path also exacerbates symptoms in real driving conditions. Another ma-
jor objective was to relate possible physiological responses to car sickness and to determine which variables might indicate car sick-
ness severity in real driving conditions. We hypothesized that (i) the parameters of interest for each measure (cardiac, respiratory,
and electrodermal) would increase gradually throughout the stimulation, reflecting the activation of the sympathetic nervous system,
(ii) each of these parameters would be impacted during the post-test period, and (iii) their respective evolution should be linked to in-
creasing symptom severity.

2. Materials and methods

2.1. Participants

Twenty-four healthy right-handed volunteers (12 women and 12 men, mean age: 39.3 ± 9 years) with no neurological or vestibu-
lar disorders took part in the experiment, having drunk no stimulating or alcoholic drinks in the previous 24 h. Minimum age was
20 years, with a driver’s license held for at least 2 years. As mentioned in the introduction, autonomous vehicles, by turning drivers
into passengers, are likely to expose them to car sickness. Given that half the passengers affected by car sickness show high suscepti-
bility, we therefore focused on this population (Bos et al., 2018). To guarantee sample homogeneity and limit inter-individual vari-
ability, participants were selected for their high susceptibility to motion sickness and car sickness, assessed by the Motion Sickness
Susceptibility Questionnaire (mean percentile score: 90.6 ± 9.2 % (Golding, 2006)). Participants were informed of the study proce-
dure and general objectives before signing a consent form warning them that they might experience car sickness during test sessions
and that they could withdraw from the experiment at any time and for any reason. One participant became too sick to finish the ex-
periment and quit the study. Participation was unpaid and no conflict of interest was declared. This study was approved by the local
ethics committee of Aix-Marseille University in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

2.2. General experimental set-up

Test sessions were conducted in a closed area approximately 400 m long and 50 m wide, with no other traffic present, for control-
lability and safety reasons. The vehicle used for these tests was a medium-sized car popular in France (Citroën C4 Picasso), driven by
one professional driver specifically trained to produce reproducible vehicle dynamics for all participants. During the test session, par-
ticipants were seated in the front passenger seat of the vehicle in a predefined sitting position, safety belt fastened. We focused on the
front passenger position to replicate as closely as possible what happens when a driver becomes a passenger (in autonomous vehi-
cles), mainly in terms of the visual and vestibular experience. Car ventilation and temperature were monitored to provide a similar
controlled environment for each participant. They were continuously equipped with physiological modules for electrocardiogram
(ECG), respiration (RSP), and electrodermal activity (EDA) recordings (detailed further). A slider was positioned in front of volun-
teers to allow them to indicate their car sickness level during every test period (equipment detailed below). For synchronization, data
from the physiological modules, the car sickness rating slider, and the vehicle's Controller Area Network (CAN) were recorded by a
laptop in the rear seat of the vehicle. The experimental road consisted of two straight segments approximately 300 m long with 10 m-
radius turning zones at both ends, forming an oval track. Three rows of twelve pylons spaced 20 m apart were located along both
straight segments, with a 6 m gap between rows (Fig. 1 - A).

Fig. 1. Representation of (A) test set-up and timeline of the test session, in periods: baseline, slalom, recovery; (B) the five time intervals per session analyzed: base-
line (Base), slaloms (comprising Sstart, Smid, Sstop,), and recovery (Recov). See Section 4 Data acquisition and processing.
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2.3. Procedure

Every test session began with one baseline period of 5 min in the parked car, during which resting physiological recordings were
collected and signal quality was assessed visually (online check). Next came a slalom period of about 20 min to induce car sickness
symptoms. If participants felt too sick to finish the test (i.e., maximum rating of 4 on the discomfort scale), the slalom period was in-
terrupted, and the vehicle was parked. Once the vehicle stopped, there was a static recovery period of 5 min. During all periods, par-
ticipants were instructed to look frontwards and to move as little as possible. Each participant took part in two test sessions on the
same day, with a one-hour lag between sessions, which lasted approximately 60 min (participant equipment, testing, and debriefing).
At the end of their second test session, participants were given details of the study’s objectives and thanked for volunteering.

During the slalom period, the car was driven at a continuous speed of about 35 km/h and, in order to minimize additional lateral
acceleration, the speed was limited to about 15 km/h during U-turns. The gap between pylons and the car speed ensured lateral
movements of close to 0.2 Hz, recognized as a car-sickness-inducing frequency (Bos & Bles, 1998).

Four conditions were designed to examine the effects of two independent variables. Two conditions assessed the influence of de-
gree of lateral acceleration in regular slaloms, while two others assessed the influence of inability to predict vehicle path in both regu-
lar and unpredictable slaloms. The purely regular slalom conditions involved two levels of acceleration: high (5 m.s2) called Regular
High (RH) and low (2 m.s2) called Regular Low (RL) (Fig. 2 ). These acceleration levels were based on the McCauley (1974) vertical
model: low acceleration (2 m/s2) causing 50 % of MSI and the model’s highest acceleration (5 m/s2) causing maximum MSI (O’
Hanlon & McCauley, 1974; Bos & Bles, 1998). During each regular slalom, the driver executed zigzags to the left and right of the py-
lons to induce reproducible lateral acceleration levels. In the unpredictable slalom conditions, the vehicle followed the path of a regu-
lar slalom but, at a given time, the driver added an unpredictable turn in an unexpected way. When the regular slalom path accelera-
tion was high, the unpredictable turn was performed at low acceleration: this is termed the Unpredictable High (UH) condition. In
conditions with low regular slalom path acceleration, the unpredictable turn was performed at high acceleration: the Unpredictable
Low (UL) condition (Fig. 2 ). Each participant took part in both a regular and an unpredictable condition at the same acceleration
level.

2.4. Data acquisition

2.4.1. CAN recordings
The vehicle’s CAN data were recorded to obtain speed, lateral acceleration, and frequency of movement oscillations. Sampling fre-

quency was set at 100 Hz. Each slalom (start and end) was automatically identified from the level of lateral acceleration, using MAT-
LAB software (MathWorks, 2017).

2.4.2. Car sickness rating recordings
The test included regular subjective assessments of car sickness severity, used to analyze the evolution of symptoms from their

very first occurrence and to compare it with the evolution of physiological recordings. To limit the time spent scoring, we therefore
chose a short and continuous scale using a slider, which was easy to understand and to remember. Based on the first five levels of Grif-
fin and Newman’s scale (2004), a 5-point likert scale was defined, graduated from 0 to 4: 0 = No symptom, 1 = Any symptom, how-
ever slight, 2 = Mild symptoms, for example, stomach awareness but no nausea, 3 = Mild nausea, 4 = Mild to moderate nausea
(Green, 2016; Wada & Yoshida, 2016). The field was divided into 4 equal segments only indicated by colored dots, so that the partici-
pants were guided in evaluating their discomfort without being influenced by numbers. Each color corresponded to a rating: green for
0, white for 1 and 2, orange for 3 and red for 4. Participants rated their car sickness level via the slider in front of them. Only one score
was recorded for baseline and one for the recovery period. In the slalom period, during the U-turns that followed each slalom, partici-
pants were instructed to give their rating based on the worst symptoms they experienced in the slalom just completed. Thus, since a
slalom lasted about 30 sec, a score was obtained every 30 sec during the slalom period. One advantage of this method lies in its imme-
diate assessment of car sickness symptoms, without test interruption and with attention only diverted for a few seconds during U-
turns (periods not analyzed).

Fig. 2. Representations of the four experimental conditions assessing the influence of lateral acceleration (High vs Low conditions) and inability to predict vehicle path
(Regular vs Unpredictable conditions).
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2.4.3. Physiological recordings
Participants were continuously monitored to record physiological measurements with Bionomadix devices connected to a BIOPAC

MP160 (BIOPAC Systems, Inc.). Physiological signals were amplified and recorded at a sample rate of 1000 Hz. Following a classical
configuration, ECG was recorded with three disposable, pre-gelled Ag/AgCl 11 mm surface electrodes (EL503, BIOPAC Systems, Inc.)
located on the left and right collarbone and in the 7th intercostal space. EDA was detected using two disposable, pre-gelled Ag/AgCl
11 mm electrodes (EL507, BIOPAC Systems, Inc.) placed on the index and middle finger of the non-dominant hand. This electrode lo-
cation was chosen with a view to participants’ comfort; moreover, several studies previously reported significant correlations be-
tween skin conductance recorded at the palmar finger site and motion sickness severity (Hu et al., 1991; Kim et al., 2005; LaCount et
al., 2011; Sclocco et al., 2016; Irmak, 2021). RSP was recorded by a sensor band wrapped around the participant’s chest (Fig. 3).

2.5. Physiological data processing

For data processing, six different phases of recordings common to all participants were selected for further analyses [(1) baseline
(Base- first 120 s), (2) the first slalom (Sstart − 30 s), (3) the middle slalom (Smid − 30 s), (4) the last slalom (Sstop − 30 s), (5) the high-
est-CSR slalom (Smax − 30 s), and (6) recovery (Recov - middle 120 s) (Fig. 1 - B)]. Reference measurements were obtained from the
baseline period. One car sickness rating was obtained for each slalom and each was linked to corresponding physiological recordings.
For each participant, Smax was the highest car sickness level reported, as suggested by Chen et al. (2010) and Keshavarz et al. (2022).
Finally, post-stimulation reactions were assessed via a rating recorded after 120 s of recovery.

Recording physiological parameters under ecological conditions is a technological challenge. A method of pre-processing and
physiological feature extraction therefore had to be developed and adapted to our data, which contained more artifacts than average
because of noise induced by the vehicle’s and the participants’ movements. This required several operations to obtain clean and use-
ful signals. In addition, for the sake of clarity, only relevant physiological features were used. Our method involved the following
steps.

2.5.1. Pre processing
Physiological raw signals were pre-processed on the selected periods of interest (Base, Sstart, Smid, Smax, Sstop, and Recov) (Fig. 1 - B).

As physiological signals are time series, it is common to use wavelets to decompose them into frequency and time–frequency repre-
sentations, with the wavelet coefficients chosen as characteristics (Shoeb & Clifford, 2005; Li & Chung, 2013; Pukhova et al., 2017).
An advantage of wavelet features is their ability to encode a time and frequency resolution trade-off allowing signal responses to car
sickness to be captured in different time windows. More specifically, we used soft and Daubechies 4 tap (Db4) wavelets obtained re-
spectively from discontinuous and continuous base functions (Mother Wavelet: db4; Mode: Soft; Method: Sure Shrink; Level: 5). The
chosen SureShrink method is an automatic procedure that, from decomposition coefficients at level 5, minimizes the unbiased esti-
mate of mean square error. Once this step was completed, each physiological signal was filtered and cleaned using artifact removal
techniques. Our method for ECG signals involved unsupervised artifact detection using an Isolation Forest model applied to 5-second
signal intervals. Any abnormal intervals detected were replaced with the closest clean segment of the signal. To avoid overlap be-
tween the replaced signal and the PQRST waves in the previous and subsequent intervals, we applied two rules: i) if the interval be-
tween the two R waves was<600 ms, one of the waves was removed; ii) if the interval between the two R waves was greater than
1100 ms, a new R wave was inserted between them (Salahuddin et al., 2007; Nunan et al., 2010). Furthermore, we used the Python
NeuroKit library (Carreiras et al., 2015; Makowski, 2016) to apply two classical filtering methods addressing baseline slow drift and
power line interference. More precisely, each ECG signal underwent 50 Hz power-line noise-filtering that involved smoothing the sig-

Fig. 3. Configuration of physiological measurement. (A) ECG and respiration belt measures: electrode configuration (white = VIN+, black = VIN-, red = ground)
and position to obtain ECG. (B) EDA measures: electrode placement used to obtain EDA signals. The ground electrode (black) was placed on the middle finger and the
active electrode (red) on the index finger on each participant’s non-dominant hand. Leads (115 Series, BIOPAC Systems, Inc.) with light-weight pinch clips connected
to thin wires were attached to all electrodes and plugged into wireless transmitters adhering to the chest (ECG, respiration belt) or wrist (EDA) of the participant. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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nal with a moving average kernel having a one-period width of 50 Hz. In addition, a Butterworth high pass filter with a cut-off fre-
quency of 0.5 Hz was applied to remove baseline slow drifts. To process the respiratory signal, we applied a classical filtering tech-
nique using Python NeuroKit library (Carreiras et al., 2015; Makowski, 2016). A Butterworth band-pass filter with a low-cut fre-
quency of 0.05 Hz and a high-cut frequency of 0.35 Hz was used to remove baseline drift and high frequency noise from the respira-
tory signal. Concerning EDA signals, supervised artifact removal was performed via an SVM-based model (Taylor et al., 2015). The bi-
nary model was already trained on a dataset of 5-second EDA signals labeled ‘normal’ or ‘abnormal’ (Taylor et al., 2015). We used
this model on our EDA samples, replacing the artifacts by the mean of the current 5-second signal. In addition, any remaining artifacts
were dealt with by a second removal applied to each 1-second signal interval via a second derivative model. Finally, the EDA signal
underwent Butterworth low pass filtering at 3 Hz using Python NeuroKit library (Carreiras et al., 2015; Makowski, 2016).

2.5.2. Feature extraction
Once signals were pre-processed, physiological features were calculated from ECG, RSP, and EDA signals, using Python software

(Python Software Foundation) with BioSPPy and NeuroKit libraries (Carreiras et al., 2015; Makowski, 2016). Features were com-
puted for all signals on every 30-second window without overlapping. Key to ECG signal processing is analyzing and understanding
the QRS complex waveform representing the ventricular depolarization (Yan et al., 2003). A QRS detection algorithm was used to ex-
tract ECG features using the BioSPPy library. We selected from the analyses performed slalom by slalom (30 s) the features mean
heart rate ('Hr_mean') and standard deviation of heart rate ('Hr_std'); the other features depending on frequency domain analysis re-
quire longer temporal analysis windows and could not be calculated (60 s at least - Shaffer & Ginsberg, 2017). RSP features were cal-
culated using the BioSPPy library, based on a detection algorithm for respiratory cycles, amplitudes, and phases (inspirations and ex-
pirations). Following the pre-test phase, it was observed that the frequency of the car movements at 0.2 Hz imposed a specific respira-
tion rate, which is precisely why additional features not impacted by the car movements were calculated and investigated. With respi-
ratory amplitude, the magnitude of each breathing phase was calculated by measuring the difference between the peak and trough of
each breath in the respiration signal. Maximum inspiration (‘In_max’) and expiration (‘Out_max’) were chosen for analysis. The over-
all EDA signal was obtained from the fluctuation of two underlying components: one is a slower and steady baseline tonic component
(skin conductance level (SCL)) and the other is a faster or reactive phasic component (skin conductance response (SCR)). Using the
NeuroKit library, two SCR features were extracted through the phasic component: peak indexes and SCR amplitudes. SCR amplitude
was a change relative to the deflection in the signal from onset to peak response. Mean SCR amplitude (‘SCR_mean’) and standard de-
viation (‘SCR_std’) were chosen for analysis. For each channel and feature, the mean and standard deviations were extracted over the
different recording periods of interest to examine changes over time in the sample.

2.6. Statistical analysis

Several dependent variables were analyzed at full sample level: (i) car sickness ratings (CSR), (ii) features of the ECG recordings
(‘Hr_mean’ and ‘Hr_std’), (iii) features of the RSP recordings (‘In_max’ and ‘Out_max’), and (iv) features of the SCR recordings
(‘SCR_mean’ and ‘SCR_std’). The evolution of each dependent variable was compared against three independent variables: ‘accelera-
tion level', 'path predictability', and ‘period’. For the ‘period’ variable, 6 periods were defined: baseline period (Base), slalom period
(Sstart, Smid, Sstop + Smax), and recovery period (Recov).

First, car sickness ratings and the time to reach maximum CSR were analyzed during the Smax period using a 2-level (‘acceleration
level': high and low) × 2-level ('path predictability': regular and unpredictable) repeated measures ANOVA. Secondly, the dynamics
of changes in car sickness ratings and physiological features were analyzed using a 2-level (‘acceleration level': high and low) × 2-
level ('path predictability': regular and unpredictable) × 5-level (‘period’: Base, Sstart, Smid, Sstop and Recov) repeated measures
ANOVA.

As a prior for all collected data, the condition of sphericity was also tested (Mauchly’s test). The p-value levels were corrected for
possible deviations from sphericity by means of the Huynh–Feldt epsilon (ε) (Kim et al., 2005; Ohyama et al., 2007; Benedek &
Kaernbach, 2010; Dennison et al., 2016). When significant differences were observed (p < 0.05), post-hoc analysis was performed
using a Fisher–Snedecor least significant difference test, allowing the results to be refined by comparing the modalities two by two.
For each significant effect, the effect size was estimated using the partial eta squared (ηp2).

Following these analyses, two-tailed Pearson correlation coefficients were calculated between physiological measurements and
maximum CSR for all conditions. Physiological measurements were drawn from the Smax period and normalized from the Base period.
Finally, stepwise multiple linear regression analysis was performed to determine which physiological changes contributed to the max-
imum CSR assessment. Only variables whose correlations with maximum CSR were greater than 0.2 were selected for regression
analysis.

All statistical analyses were performed using Statistica software® v.10 (Statsoft Inc, France). Data are presented as mean ± SEM
for each assessment and significance levels as *p < 0.05, **p < 0.01 and ***p < 0.001.
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3. Results

3.1. CAN recordings

All participants were subjected to a maximum of 26 slaloms during the slalom period. The mean time for one slalom, the mean
time for the whole slalom period, and the mean of the resulting lateral oscillation frequencies and accelerations were calculated for
each condition (Table 1).

3.2. Car sickness ratings (CSR)

3.2.1. Maximum CSR
During the test, all participants reported at least some degree of car sickness and reached their maximum CSR during the Smax pe-

riod. The maximum ratings distribution for each condition is shown in Fig. 3. High conditions led to a distribution with more high
scores (Bles et al., 1998; Bos and Bles, 1998) than Low conditions (RH: +75 % vs RL and UH: +39 % vs UL). Unpredictable condi-
tions had a distribution with more high scores than Regular conditions for both acceleration levels (UH: +8 % vs RH and UL: +45 %
vs RL) (Fig. 4). For an approximately similar level of acceleration (≈ 5 m.s2), there were more high scores in the UH condition than in
the RH condition.

Table 1
Main characteristics of Regular Low (RL), Unpredictable Low (UL), Regular High (RH), and Unpredictable High (UH) slaloms experienced by the
participants (mean ± SD). Note that the same ranges of mean lateral oscillation frequency and accelerations were applied in Regular and Unpre-
dictable conditions.
Conditions Mean time for 1

slalom (sec)
Mean time for slalom
period (min)

Mean number of
slaloms

Minimum number
of slaloms

Lateral oscillation
frequencies (Hz)

Lateral oscillation
accelerations (m.s2)

Regular Low (RL) 32 ± 1 20 ± 1 26 ± 0.3 26 0.20 ± 0.04 2.0 ± 0.1
Unpredictable Low

(UL)
32 ± 1 19 ± 3 25 ± 1.2 14 0.20 ± 0.04 3.0 ± 0.45

Regular High (RH) 35 ± 1 10 ± 7 13 ± 2.5 3 0.19 ± 0.04 5.5 ± 0.19
Unpredictable High

(UH)
34 ± 1 11 ± 7 13 ± 2.9 2 0.19 ± 0.04 5.2 ± 0.28

Fig. 4. Distribution of maximum CSR reached by participants during the Smax period: green [0–1], yellow [greater than1–2], orange [greater than2–3], and red
[greater than3–4] (n = 23). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (A) Maximum CSR observed for each condition in Smax period (B); time to reach maximum CSR (mean ± SEM; n = 23). Statistical differences between condi-
tions are shown by black stars and full lines. * significant difference (p < 0.05), *** significant difference (p < 0.001).
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Statistical analysis indicated a significant interaction effect between ‘acceleration level' and 'path predictability' on maximum CSR
measured in the Smax period (F(1,21) = 9.03; ε = 1.0; p < 0.01; ηp² = 0.30). Post-hoc analyses revealed higher ratings in High condi-
tions than in Low conditions (p < 0.001) and higher ratings in UL than in RL (p < 0.05) (Fig 5 A). In addition, a significant effect of
'acceleration level' was observed on the time taken to reach maximum CSR (F(1,21) = 7.09; ε = 1.0; p < 0.05; ηp² = 0.25). Partici-
pants reached their maximum score faster in High conditions than in Low conditions (Fig 5 B). All results (mean ± SEM) obtained for
each feature by test period (Smax, Base, Sstart, Smid, Sstop, and Recov) can be found in supplementary material (Table 1). Details of all as-
sociated statistics are reported in Table 2 and supplementary material.

3.2.2. CSR dynamics
A significant interaction between 'test period', 'acceleration level', and 'path predictability' was observed on car-sickness rating dy-

namics (F(3,63) = 5.61; ε = 0.91; p < 0.01; ηp2 = 0.49). Post-hoc analyses revealed that ‘Base’ and 'Sstart' were not significantly af-
fected. As illustrated in Fig. 6, each participant began the experiment symptom-free (‘Base’) and ratings did not significantly differ
between conditions at 'Sstart'. However, during the slalom period, ratings increased more or less sharply depending on conditions.
There were significant differences between Low and High conditions (p < 0.001), with significantly higher ratings at 'Smid', 'Sstop', and
‘Recov’ in the High conditions than in the Low conditions. In addition, there were significant differences between Regular and Unpre-
dictable conditions (p < 0.05) (Table 2 and Supplementary material). Ratings were significantly higher at 'Smid' and 'Sstop' in the UL
conditions than in the RL conditions, and were also higher at 'Smid' in the UH conditions than in the RH conditions (Table 2 and Sup-
plementary material). Whatever the condition, none of the ratings returned to baseline level at ‘Recov’.

Fig. 6. CSR observed for each test period (Base, Sstart, Smid, Sstop, and Recov) in each condition (mean ± SEM; n = 23). Statistical differences between test periods in a
condition are shown by dollar symbols and lines color-coded by condition: (i) Regular Low: dark blue solid line, (ii) Unpredictable Low: light blue dashed line, (iii) Reg-
ular High: dark orange solid line, and (iv) Unpredictable High: light orange dashed line. Statistical differences between conditions are shown by black stars and full
lines. * and $ significant difference (p < 0.05), ** significant difference (p < 0.01), *** and $$$ significant difference (p < 0.001). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Results of ANOVA analysis for each feature and each test period (Base, Sstart,Smid, Sstop, and Recov) in each condition (mean ± SEM; n = 23). The
three independent variables are: ACCEL = acceleration level, PATH = path predictability, and PERIOD = test period.
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3.3. Physiological measurements

3.3.1. ‘Hr_mean’ dynamics
A significant interaction between 'test period' and 'acceleration level' was observed on mean heart rate (‘Hr_mean’) values (F

(4,84) = 5.56; ε = 0.46; p < 0.01; ηp2 = 0.21). Post-hoc analyses revealed a significant increase in all values during the slalom pe-
riod compared to baseline (Fig. 7A). During the recovery period, only Low condition values returned to baseline level (Table 2 and
Supplementary material). Another significant interaction was observed between 'test period' and 'path predictability' on mean heart
rate (‘Hr_mean’) values (F(3,63) = 5.61; ε = 0.36; p < 0.05; ηp2 = 0.14). Post-hoc analyses revealed a significant increase in all
values during the slalom period compared to baseline (Fig. 7B). In addition, there was a significant difference between Regular and
Unpredictable conditions for the recovery period (p < 0.01) (Table 2 and Supplementary material), with higher values in Unpre-
dictable conditions than in Regular conditions. Only Regular condition values returned to baseline level.

3.3.2. ‘Hr_std’ dynamics
A significant interaction between 'test period' and 'acceleration level' was observed for standard deviation of the heart rate

(‘Hr_std’) values (F (4,84) = 3.21; ε = 0.40; p < 0.05; ηp2 = 0.07) (Table 2). For the High conditions, post-hoc analyses revealed a
significant increase during the slalom period compared to baseline (p < 0.01) (Fig. 8 and Supplementary material). During Recov,
values returned to baseline level (Supplementary Table 1).

3.3.3. ‘In_max’ dynamics
A significant interaction between 'acceleration level' and 'path predictability' was observed for maximum inspiration (‘In_max’)

values (F(1,21) = 9.22; ε = 0.96; p < 0.01; ηp2 = 0.30) (Table 2). Post-hoc analyses revealed higher values in the RH conditions
than in the others (Fig. 9 and Supplementary material). There was another significant effect of interaction between 'test period' and
'acceleration level' on maximum inspiration (‘In_max’) values (F (4,84) = 3.60; ε = 0.82; p < 0.01; ηp2 = 0.15). For both accelera-
tion levels (Low and High), post-hoc analyses revealed a significant increase in all values during the slalom period compared to base-
line (Fig. 9). The increase was significantly higher in High conditions than in Low conditions for all slalom periods; values were also
higher during the recovery period in High than in Low conditions. In High conditions, the values peaked at 'Sstop' and decreased dur-
ing Recov but remained higher than baseline values. In Low conditions, no difference between slalom periods (Sstart, Smid, Sstop) was
observed but values returned to baseline level during Recov.

3.3.4. ‘Out_max’ dynamics
A significant effect of interaction between 'test period', 'acceleration level', and 'path predictability' was observed on maximum ex-

piration (‘Out_max’) values (F(4,84) = 3.64; ε = 1.0; p < 0.01; ηp2 = 0.30). Post-hoc analyses revealed that ‘Base’ values were not
significantly affected by the factors (Fig. 10). In contrast, during the slalom period, all values increased similarly compared to base-
line, except in RH conditions, where significantly higher values were observed during slaloms and Recov than in the other conditions
(Table 2 and Supplementary material). During Recov, only RH condition values did not return to baseline level.

Fig. 7. Representation of ‘HR_mean’ values (mean ± SEM; n = 23) for (A) interaction between 'test period' and 'acceleration level' and (B) interaction between 'test
period' and 'path predictability’ in each test period (Base, Sstart, Smid, Sstop, and Recov). Statistical differences between test periods in a condition are shown by dollar
symbols and lines color-coded by condition: (i) Regular: black full line, (ii) Unpredictable: black dashed line, (iii) Low: light blue full line, and (iv) High: light orange
full line. Statistical differences between conditions are shown by black stars. * and $ significant difference (p < 0.05), *** and $$$ significant difference (p < 0.001).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. ‘Hr_std’ values observed for each test period (Base, Sstart, Smid, Sstop and Recov) according to ‘acceleration level’, regardless of ‘path predictability’
(mean ± SEM; High conditions n = 12; Low conditions n = 11). Statistical differences between test periods in High conditions are indicated by a light orange dollar
symbol and full lines. $ significant difference (p < 0.05). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 9. ‘In_max’ values observed for each test period (Base, Sstart, Smid, Sstop, and Recov) according to acceleration level, regardless of path predictability (mean ± SEM;
High conditions n = 12; Low conditions n = 11). Statistical differences between test periods in a condition are shown by dollar symbols and lines color-coded by con-
dition: (i) Low: light blue full line and (ii) High: light orange full line. Statistical differences between conditions are shown by black stars. * and $ significant difference
(p < 0.05), *** and $$$ significant difference (p < 0.001). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.3.5. ‘SCR_mean’ dynamics
A significant main effect of 'test period' was observed on mean values for skin conductance response ('SCR_mean') (F(4,

84) = 4.87; ε = 0.71; p < 0.01; ηp2 = 0.19). Post-hoc analyses revealed a significant increase during Smid and Sstop compared to
baseline (Fig. 11 A and Supplementary material). Finally, stopping the slalom during Recov induced a significant decrease in values,
which returned to baseline level.

3.3.6. ‘SCR_std’ dynamics
A significant effect of 'test period' was observed on the standard deviation of skin conductance response (‘SCR_std’) (F(4,

84) = 6.51; ε = 0.91; p < 0.001; ηp2 = 0.24). Post-hoc analyses revealed significant increases throughout the slalom period com-
pared to baseline (Fig. 11 B and Supplementary material). Stopping the slalom during Recov induced a significant decrease in values,
which returned to baseline level.

3.4. Relationship between car sickness ratings and physiological measurements

Significant correlations were observed between maximum CSR (CSR_max) and physiological parameters (Table 3A). There were
significant correlations between CSR_max and ‘HR_mean’ and ‘Out_max’ values (greater than 0.4 for both), as well as with ‘HR_std’,
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Fig. 10. ‘Out_max’ values observed for each test period (Base, Sstart, Smid, Sstop, and Recov) in each condition (mean ± SEM; n = 23). Statistical differences between
test periods in a condition are shown by dollar symbols and lines color-coded by condition: (i) Regular Low: dark blue full line, (ii) Unpredictable Low: light blue
dashed line, (iii) Regular High: dark orange full line, (iv) Unpredictable High: light orange dashed line. For the Regular High condition, statistical differences between
test periods and from other conditions are shown by dark orange stars and full lines. Statistical differences between conditions are shown by black stars. * and $ sig-
nificant difference (p < 0.05), ** and $$ significant difference (p < 0.01), *** and $$$ significant difference (p < 0.001). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. (A) ‘SCR_mean’ and (B) ‘SCR_std’ values observed for each test period (Base, Sstart, Smid, Sstop, and Recov) regardless of path predictability (mean ± SEM;
n = 23). Statistical differences between test periods are shown in black. $$$ significant difference (p < 0.001).

Table 4
Results of (A) Pearson correlations between maximum CSR and physiological measurements and (B) Stepwise regression of physiological mea-
surements on maximum CSR (Criterion to enter = 0.2). (n = 23) * p < 0.05 (two-tailed).
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and ‘In_max’ (greater than 0.2 for both). These results suggest that the changes observed in cardiac and respiratory measurements
and car-sickness symptoms are linked. In order to confirm this hypothesis, a regression analysis was performed to determine which
physiological changes could be used to estimate maximum CSR during Smax. 'HR_mean', 'HR_std', 'In_max', and 'Out_max' showed ade-
quate predictive power for inclusion in the regression. It was found that increases in car-sickness symptoms can be estimated from
changes in cardiac and breathing activities. Indeed, 'HR_mean', 'HR_std', and 'Out_max' explained 41.4 % (adjusted R2 = 0.372) of
the variance in maximum CSR values, (F(3,42) = 9.899, σest = 0.898, p < 0.001) (Table 3B).

4. Discussion

For the first time in real driving conditions, our results show that sickness-inducing stimuli such as increased lateral acceleration
and vehicle path unpredictability induce (i) an increase in symptom severity and (ii) specific physiological changes reflecting the acti-
vation of the SNS. CSR results reveal that the greater the lateral acceleration and the less predictable the vehicle path, the stronger the
symptoms. Moreover, an increase in several physiological parameters is observed simultaneously with the increase in CSR, with mod-
erate positive correlations between CSR evolution and physiological changes. Furthermore, linear regression results suggest that
these physiological parameters can be used to detect car sickness, thus demonstrating a link between car sickness symptoms and
physiological changes.

4.1. Triggers of car sickness

While the impact of acceleration in the vertical and longitudinal axes has been thoroughly documented, few studies have investi-
gated the lateral axis. Yet lateral acceleration has been identified as the most nauseating in cars (Cheung & Nakashima, 2006; Diels,
2014; Smyth et al., 2021). Indeed, our finding that the higher the level of lateral acceleration, the stronger the car sickness symptoms
extends those of previous work (Turner, 1999; Feng, 2017; Irmak, 2021), this time in the lateral axis and in real driving conditions.
During the slalom period, participants exhibited a greater distribution of high CSR in High conditions than in Low conditions (RH:
+75 % vs RL and UH: +39 % vs UL). In addition, participants recorded higher maximum CSR and reached this maximum earlier in
High conditions (both Regular and Unpredictable) than in Low conditions. These results are consistent with previous findings on lon-
gitudinal acceleration. By increasing acceleration level in a dynamic simulator, Irmak et al. (2022) showed that maximum ratings not
only increased but also were reached earlier, since their dropout rates increased. Regarding CSR dynamics, a significant increase was
observed with time from Smid onwards, reaching a maximum at ‘Sstop’. Furthermore, the symptoms that developed during the slalom
period, although attenuated, persisted into the recovery period (CSR ≠ 0). These results extend results of previous papers showing
that car sickness severity increases throughout testing (Kuiper et al., 2018; Irmak, 2021; Henry et al., 2022) and that symptoms can
persist from minutes to hours after stimulation (Kim et al., 2005; Golding, 2006; Diels & Bos, 2016). However, we showed more
specifically that high acceleration levels lead to a sharper increase in symptom severity, which remains higher during the post-
stimulation recovery period. Our results demonstrate that there is a strong relationship between levels of lateral acceleration in cars
and increased car sickness (timing and severity).

Determining what kind of lateral movements to avoid in future autonomous vehicles means exploring their separate impacts and
parameters (acceleration, direction, frequency etc.). Our study employed the frequency known to induce maximum nausea in cars
(Wada et al., 2012; Wada & Yoshida, 2016; Henry et al., 2022) regardless of acceleration level. Here, we show that increasing the
level of acceleration in cars with sinusoidal lateral movements at this 0.2 Hz frequency leads to more severe symptoms. This extends
results obtained with the Mc Cauley (1974) model applied to sinusoidal vertical movements (O’Hanlon & McCauley, 1974; Bos &
Bles, 1998). At 0.2 Hz, Bos and Bles (1998) obtained more than 80 % MSI at 5 m/s2, as opposed to around 60 % at 2 m/s2. Our simi-
lar observations appear to suggest that acceleration level has a similar impact in the three axes (lateral, longitudinal, and vertical) at
0.2 Hz. Likely, the otolith tilt/translation ambiguity (Wood, 2002; Clément, 2011) induced at this 0.2 Hz frequency is amplified by
the increase in acceleration level, whatever the direction of application. The vestibular system is known to be particularly sensitive to
changes in velocity, i.e., accelerations (Mayne, 1974; Reason and Brand, 1975; Kuiper, Bos, Schmidt, et al., 2020b). When the acceler-
ation level increases, the vestibular system thus becomes highly engaged and may be largely responsible for the worsening of the sen-
sory conflict causing car sickness.

Our study also investigated, for the first time in real driving conditions, the impact of car path unpredictability on symptom sever-
ity. Interestingly, our results show that inability to predict vehicle path also exacerbates symptoms. Unpredictable conditions had a
CSR distribution with more high scores than Regular conditions. More precisely, high scores appeared more frequently in UH condi-
tions than in RH conditions at almost the same levels of acceleration (≈5m.s2). In addition, maximum CSR were greater in Unpre-
dictable than in Regular at low acceleration levels. Furthermore, CSR were higher in ‘Smid’ and ‘Sstop’ for UL conditions than for RL
conditions and higher in ‘Smid’ for UH conditions than for RH. Thus, inability to predict vehicle trajectories induced a gradual increase
in symptom severity during the stimulation period. These results from real car lateral accelerations are in line with those obtained in
the laboratory along the longitudinal axis using repeated fore-aft motion on a sled (Kuiper, Bos, Schmidt, et al., 2020b). Movements
in response to events unpredictable either in timing or direction caused more severe motion sickness symptoms than when the same
events occurred in a predictable way. In contrast, other studies on movement predictability have focused on the effectiveness of coun-
termeasures allowing participants to anticipate future movements based on auditory (Kuiper, Bos, Diels, et al., 2020a; Maculewicz et
al., 2021), visual (Hendricks & Tumpey, 1990) or multimodal cues (Sweeney & Bartell, 2017). Overall, they report less severe motion
sickness symptoms when participants are able to anticipate future movements with help. However, these studies manipulated the par-
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ticipants’ ability to anticipate events, whereas our study manipulated the events themselves so as to make them unpredictable for the
participants.

Nevertheless, both mechanisms depend on the updating of internal models according to the theory of sensory mismatch (Bos &
Bles, 2002; Bos et al., 2008, 2010; Dennison et al., 2016). This theoretical framework explains why drivers do not experience motion
sickness, whereas passengers do (Bos et al., 2008). Drivers can predict vehicle path (acceleration, speed, direction), which allows
them to update their internal models and predict self-motion using efference copies (Reason and Brand, 1975; Bles et al., 1998; Bos &
Bles, 1998; Bos et al., 2008). Typically, when the forward internal model is correctly tuned, the expected movements coincide with
the perceived movements. Passengers however, in the absence of external help (anticipatory cues), are unable to predict upcoming
movements. In addition, when passengers expect regular movements and the driver performs unpredictable movements, the mis-
match between expected and real movements is amplified, and the internal model cannot be properly tuned. This may explain why
our study found that participants became sicker in unpredictable conditions, consistent with the idea that a major cause of motion
sickness is a mismatch between perceived and expected motion (Reason and Brand, 1975; Bles et al., 1998; Kuiper, Bos, Schmidt, et
al., 2020b).

4.2. Physiological measures

As previously mentioned, the literature on physiological measurements and motion sickness indicates that (i) there is as yet no
consensus on an objective indicator of motion sickness, (ii) despite the number of studies, there is no consensus on the directions (de-
crease/increase) of the physiological changes themselves, and (iii) so far, most studies have been conducted in laboratory conditions
(rotating optokinetic drum, VR, Static driving simulator, etc.). Therefore, the third objective of this study was to investigate the rela-
tionship between car sickness and physiological responses in real driving conditions. We first analyzed the dynamics of physiological
parameters retained over the several test phases to compare their evolution with CSR dynamics. Overall, the physiological parameters
uniformly showed an significant evolution during the slalom period, whereas responses during the recovery period were not homoge-
neous.

‘HR_mean' and 'HR_std' reflect modulations of cardiac activity and its variability during the test (Shaffer & Ginsberg, 2017;
Meteier et al., 2021). ‘HR_mean’ showed a significant increase during the slalom period in all conditions and a return to baseline level
only in Low and Regular conditions during the recovery period. This suggests that the most sickness-inducing conditions had the most
persistent effects on cardiac activity. ‘HR_std’ showed an increase in High conditions during the slalom period, with a subsequent re-
turn to baseline level, indicating that changes were only induced by high levels of acceleration and did not persist over time. These in-
creases could be interpreted as only due to the vehicle’s movements and not to the evolution of the sickness. However, cardiac activ-
ity was elevated during the full slalom period, simultaneously with increased car sickness; for the most sickness-inducing stimuli, this
persisted in the recovery period. Type of stimulation therefore has an impact on ‘HR_mean’ that may persist once the movements
stop, indicating that the changes are not solely caused by the agitation experienced. Indeed, we observed a significant correlation be-
tween 'HR_mean', 'HR_std' values and the most severe car sickness (CSR_max): increases in car sickness severity were accompanied by
increased cardiac activity. Our findings confirm the hypothesis of a relationship between car sickness and cardiac changes (Keshavarz
et al., 2022), although findings in the literature remain inconsistent. This discrepancy is mainly due to the kind of stimuli employed,
and/or the methodology used for measuring and analyzing cardiac activity. Several studies on cardiac parameters used laboratory se-
tups, with inconclusive results (increase, decrease, no change) (Hu et al., 1991; Cheung, 2004; Kim et al., 2005; Dahlman et al., 2009;
Koohestani et al., 2019). Only one study measured physiological variables in cars, reporting a slight increase in heart rate with car
movements (Irmak, 2021). Yet the stimuli used were similar to those in our study, with a lateral acceleration of almost 4 m/s2 (i.e.,
between our low and high conditions), and a condition with no view of the outside environment was used (i.e., highly sickness-
inducing). Comparing our results with the literature reveals that the direction and magnitude of cardiac changes likely depends on
the experimental environment and especially on the nature of the stimulus itself (frequency, acceleration, speed, direction).

Regarding RSP parameters, we analyzed maximum inspiration (‘In_max’) and expiration (‘Out_max’) values, reflecting respira-
tory volume. Although these features are not well documented in the literature, they proved relevant in our study. As with cardiac pa-
rameters, an increase in both was observed during the slalom period for all conditions. ‘In_max’ values revealed a gradual and strong
increase until ‘Sstop’ in High conditions only, while ‘Out_max’ values exhibited the same pattern in RH conditions only. In the same
vein, during the recovery period, respiratory measurements remained high only in High conditions for ‘In_max’ and in RH conditions
for ‘Out_max’. This provides evidence that higher lateral acceleration levels induce greater and more persistent changes in breathing
volume. The positive correlation observed between our breathing parameters and the most severe car sickness (CSR_max) confirms
this observation. This relationship is also supported by studies demonstrating that controlled breathing can reduce the level of motion
sickness (Yen Pik Sang et al., 2003; Denise et al., 2009; Chin-Teng Lin et al., 2011). Lin et al., (2011) showed that people affected by
motion sickness make breathing adjustments (deep breathing) to relieve their discomfort. However, in our study, while some increase
in breathing volume was observed, these adjustments remained limited, mainly due to the car movements. In fact, we found that the
frequency of car movements at 0.2 Hz imposed a specific respiration rate, which could partly explain why symptoms remained so se-
vere: participants were not in full control of their breathing. Furthermore, in the regular conditions, participants could take advan-
tage of periods with less stimulation (between turns) to adapt their breathing through greater inspiration and expiration. In contrast,
our results tend to indicate that there were even fewer adjustments under unpredictable car movements, especially with high acceler-
ation levels. All these observations argue for the hypothesis that physiological changes under sickness-inducing conditions depend on
the nature of the stimulus.
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Finally, we analyzed the EDA parameters 'SCR_mean' and 'SCR_std', the mean and variability of phasic skin conductance responses.
This electrodermal conductance is used to measure sweating, a major motion sickness symptom (Kennedy et al., 2010; Lackner,
2014). Our SCR values increased during the slalom period and returned to baseline level during the recovery period. Under stimula-
tion, ‘SCR_mean’ showed an increase from ‘Smid’ to ‘Sstop’ and ‘SCR_std’ showed an increase from ‘Sstart’ to Sstop’. These results are in
agreement with those of Irmak et al. (2021), also obtained in a real car: sickness-inducing movements increased electrodermal con-
ductance in palmar sites over time. The literature generally reports the same observation with increased severity of motion sickness
(Hu et al., 1991; Harm, 2002; Kim et al., 2005). While it has been shown that forehead measurements gave highly sensitive measure-
ments (Golding,1992; Wan & Hu, 2003), our results confirmed that measurements on palmar fingers also led to high satisfying sensi-
bility. However, explanations for the underlying mechanisms remain unclear and inconsistent, possibly due to the varying measure-
ment sites (forehead, finger, back of hand) and features used.

We observed several physiological changes when participants were affected by car sickness. There is a consensus among certain
studies that all kinds of motion sickness can be considered as a stress response to a stressful stimulus (sickness-inducing movements)
inducing particular physiological changes (Harm, 2002; Napoletano & Rossi, 2018). An increase in cardiovascular, respiratory, and/
or electrodermal activities, as in our study, has previously been shown to reflect physiological stress (Cacioppo et al., 2007). It is
known that depending on the stress or agitation level of the person, the homeostasis of the body is modulated, causing an alternation
between the activation of the sympathetic and parasympathetic systems (Shaffer & Ginsberg, 2017). However, under severe stimulus,
the sympathetic nervous system (SNS) dictates appropriate mechanisms and physiological responses to enhance the body's ability to
deal with a threat (known as the “fight or flight response”) (Harm, 2002; Irmak, 2021). Notably, this is achieved through increased
arousal, which modifies electrodermal conductance (EDA), strongly correlated with the activity of the sweat glands (sweating)
(Boucsein et al., 2012). It also increases the heart and respiratory rate, which amplifies the blood flow and enhances the transport and
supply of oxygen in the body (Cacioppo et al., 2007; Chan et al., 2022). Therefore, our results seem to highlight a specific/dominant
activation of the sympathetic system during the progression of car sickness symptoms. Nevertheless, motion sickness is more complex
than a simple stress and/or agitation episode, which is why other studies contest the ability of physiological measurements alone to
indicate motion sickness levels (Keshavarz et al., 2022; Smyth et al., 2021). Actually, the literature has illustrated the difficulty and
unreliability of relating physiological measurements to motion sickness, depending on the environment and stimuli used (Dennison et
al., 2016; Koohestani et al., 2019; Keshavarz et al., 2022). In our study, although the magnitude of our cardiac and respiratory
changes depended on the stimuli used (4 conditions), all parameters evolved in the same direction and correlatively with car sickness
severity. Moreover, the linear regression showed that our measures (cardiac and respiratory) could explain 41 % of the variance in
maximum CSR values, demonstrating the link between the physiological state involved in car sickness and its symptoms.

4.3. Limitations of the study

Our results should be interpreted with caution in view of certain limitations. One major limitation of the study is sample size. Al-
though the participants were selected for their high susceptibility to motion sickness, our results showed inter-individual variability
which limited our data analyses (e.g., precise data temporal evolution, modeling, analysis per individual, etc.). More data from a het-
erogeneous and larger population are needed before these findings can be generalized. Second, this study is one of the first to measure
physiological parameters in real driving conditions, which is both a limitation and a challenge. In our environment, where noise
could impact the recorded data, the method of pre-processing and physiological feature extraction had to be adapted in order to ob-
tain clean and useful signals. In addition, new physiological features not greatly affected by vehicle dynamics (respiration rate) were
explored, reducing the scope for comparison with previous laboratory studies. However, our findings point to the value of common
physiological measures, such as heart rate, already used in other motion sickness studies (Kim et al., 2005; Dahlman et al., 2009;
Dennison et al., 2016; Koohestani et al., 2019; Irmak, 2021), as well as respiratory amplitude ('In_max' and 'Out_max'), as possible in-
dicators of car sickness occurrence. These encouraging results deserve to be further explored. Third, it should be noted that when we
manipulated vehicle path unpredictability, the acceleration level was also being manipulated. Under high acceleration levels, almost
all participants rapidly reached their maximum symptoms (ratings of 4 = end of test). This saturation prematurely stopped the runs,
resulting both in a rating plateau (a floor effect (Levine et al., 2014; Irmak, 2021)) and in reduced exposure time (≈10 min). Thus,
had a higher symptom threshold than ‘mild to moderate nausea’ been applied, thereby lengthening exposure time, we might have ob-
served a greater difference between the regular and unpredictable conditions even at high acceleration levels. Finally, only two lat-
eral acceleration levels (2 m.s2 and 5 m.s2) and one frequency level (0.2 Hz) were analyzed in this study. Although this frequency is
recognized in the literature as the most nauseating (Bos & Bles, 1998), and the lateral acceleration levels assessed here induced symp-
toms, this was not sufficient to allow proper analysis of the impact of vehicle dynamics in the different axes (lateral, longitudinal and
vertical). Adapting the model proposed by Bos and Bles (1998) for vertical stimulations to car movements and determining the spe-
cific characteristics of movement causing car sickness will require testing a larger range of accelerations (0 to 6 m/s2) and frequen-
cies (0 to 0.7 Hz). Once the impact of car movements is known, more realistic studies on the road should be considered.

5. Conclusion

For the first time in real driving conditions, our results show that the stronger the lateral acceleration (2 vs 5 m.s2), the more se-
vere the symptoms of car sickness, and that inability to predict the vehicle’s path exacerbates symptoms. In future autonomous vehi-
cles, the vehicle dynamics will need to be designed, as far as possible, to limit nauseating movements such as high lateral acceleration
and/or low frequency movements. In addition, countermeasure solutions should be considered to allow vehicle occupants to antici-
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pate the vehicle's path in real time so as to update their internal model. Furthermore, these particular factors, which are highly preva-
lent during car travel, induce specific physiological changes reflecting SNS activation. It seems that the more impactful the stimulus is
considered by participants (high CSR), the more their SNS is activated to allow the body to respond. Our work thus provides evidence
that (i) physiological changes related to motion sickness can be recorded in the car with laboratory devices, (ii) processing stages
need to be adapted according to these environmental constraints, (iii) some features explored in the laboratory can also be used in a
real car, but (iv) new features (In_max and Out_max) also deserve to be explored and could reveal SNS activation. Indeed, the linear
regression applied to our data suggests that these physiological parameters can be used to confirm the CSR level indicated by the par-
ticipants. While the results of this study are encouraging, however, using physiological measures alone to indicate car sickness symp-
toms does not currently appear sufficient. Subjective measures such as ratings (CSR) still need to be used to evaluate car sickness
severity and to identify the physiological changes associated with it. Automating the detection of car sickness from objective data
only will require a predictive model taking into account the individuals’ parameters as well as the nature of the stimuli. For this pur-
pose, further research should be conducted to assess (i) the influence of other car-sickness-inducing factors (different vehicle dynam-
ics, levels of control and predictability, passenger positioning, etc.) and (ii) the changes in individual parameters that these factors in-
duce.
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